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Abstract A key problem in environmental flow assessment is the explicit linking of
the flow regime with ecological dynamics. We present a hybrid modeling approach
to couple hydrodynamic and biological processes, focusing on the combined impact
of spatial heterogeneity and temporal variability on population dynamics. Studying
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periodically alternating pool-riffle rivers that are subjected to seasonally varying flows,
we obtain an invasion ratchet mechanism. We analyze the ratchet process for a car-
icature model and a hybrid physical–biological model. The water depth and current
are derived from a hydrodynamic equation for variable stream bed water flows and
these quantities feed into a reaction-diffusion-advection model that governs popula-
tion dynamics of a river species. We establish the existence of spreading speeds and
the invasion ratchet phenomenon, using a mixture of mathematical approximations
and numerical computations. Finally, we illustrate the invasion ratchet phenomenon
in a spatially two-dimensional hydraulic simulation model of a meandering river struc-
ture. Our hybrid modeling approach strengthens the ecological component of stream
hydraulics and allows us to gain a mechanistic understanding as to how flow patterns
affect population survival.

Keywords Pool-riffle rivers · Spatial-temporal heterogeneity · Environmental flow
assessment · Invasion ratchet · Flow regime

1 Introduction

Streams and rivers are flow-dominated systems, and it is now widely recognized that
variations in the water flow are critically important for the ecosystem integrity of
riverine environments (Bunn and Arthington 2002; Poff et al. 1997). Flow regimes
can change markedly in time and space, e.g. from daily over seasonal to interannual
time scales and from microhabitats over channel units to entire drainage basins (Cooper
et al. 1998; Fausch et al. 2002). The impacts of temporal and spatial flow variations are
relatively well studied in isolation, but their combined interplay is rarely investigated,
and in ecological theory generally little is known on how these two sources of vari-
ability can interact. Here, we show that a new phenomenon can arise. By developing a
hybrid model that connects spatially heterogeneous river morphology and temporally
varying water flow with population dynamics, we also provide a tighter coupling of
ecological and hydrological components in environmental flow assessment (EFA).

1.1 Environmental Flow Requirements: The Need for Population Dynamics

There is an increasing concern on how flow regime alterations [due to economic
developement, human population growth, climate change, and other factors (Dudgeon
et al. 2006; Nilsson et al. 2005; Palmer et al. 2006; Poff et al. 2003; Richter et al. 2003;
Vörösmarty et al. 2010)] affect river ecosystems. Moreover, international legislation
such as the European Water Framework Directive implement a holistic view of water
bodies, emphasizing biological as well as hydromorphological factors in addition to
the more traditional physical–chemical aspects. Environmental managers routinely
use EFA in water resource planning, with the aim to quantify the flow requirements
in space and time that are necessary to sustain desired ecosystem services (Clifford et
al. 2006; Pahl-Wostl et al. 2013; Poff et al. 1997; Poff and Zimmerman 2010). This
is sometimes also referred to as instream flow need (IFN) assessment Anderson et al.
(2006), environmental flow methodologies (EFMs) (Tharme 2003), and instream flow
incremental methodology (IFIM) (Stalnaker et al. 1995).
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Hence, there are rapidly expanding research activities on how river morphology
and water flow affect the ecological status of rivers (Clifford et al. 2006; Poff and
Zimmerman 2010). The increasing interest is reflected in recently coined terms such
as “ecohydraulics” (Lancaster and Downes 2010), “ecohydrology” (Janauer 2000),
“habitat hydraulics” (Stalnaker et al. 1996), and “hydraulic stream ecology” (Statzner
et al. 1988). This field of research combines hydraulic aspects such as water depth,
velocity, and substrate levels with the aim to identify, record, and design biological
habitats, sometimes also called physical biotopes. For instance, the UK Environment
Agency uses the River Habitat Survey to catalog and assess the quality of river ecosys-
tems in England and Wales.

However, while the hydraulic side of these approaches are well developed, there is
a gap on the ecological side, which has been identified as an “important impediment
to progress” (Anderson et al. 2006, p. 311). In essence, existing methodologies rely
on habitat suitability models and physical habitat availability as a proxy for popula-
tion status. Although their limitations are long recognized (Gallien et al. 2010; Ibanez
et al. 2013; Lancaster and Downes 2010), they are currently still the “cornerstone”
(Shenton et al., 2012, p. 4) in linking flow regimes with ecology. To quote (Lancaster
and Downes, 2010, p. 2010), “a lot of work that claims to address problems at the
ecology–hydraulics interface lacks a strong ecological context (or, sometimes, even
any ecological context) and is often disconnected from ecological theory”. As a con-
sequence, good quantitative evidence for impacts of flow alterations on populations is
still rare; see the recent review in (Poff and Zimmerman 2010). There remains a lack
of framework to integrate ecological dynamics, rather than static habitat descriptions,
into water flow assessments (Anderson et al. 2006).

Here, we present a hybrid modeling approach that directly links river hydrology
with stream population models. Such a coupling is needed if realistic variations are
to be included in river flow models for populations. Ultimately this hybrid physical–
biological modeling approach provides a way to analyze the effect of realistic river
fluctuations on population processes.

1.2 Spatial and Temporal Variability in Flow Regimes

Spatial heterogeneity in rivers and streams is a result of natural bed structures and water
flow as well as anthropogenic modifications of these structures and flows. In natural
rivers or streams, the channel shape, channel gradient, bed gravel, flow discharge, and
nutrient availability vary from location to location, which in turn greatly affects the
growth and spread of a population in the channels. Most mathematical models for
stream/river populations assume the habitats to be spatially homogeneous due to the
difficulty of modeling and analyzing spatial heterogeneity; see e.g., (Jin and Lewis
2012, 2011; Lutscher et al. 2010). In the few works where spatially heterogeneous
habitats are considered in aquatic population models; see e.g., (Lutscher et al. 2006),
the stream or river has a simplified structure and is assumed to consist of periodically
alternating spatially homogeneous good and bad patches. This simple assumption not
only opens the door to study the influences of spatial heterogeneity on the spread of
aquatic species but also leaves possibilities for investigations in more realistic streams
or rivers.
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The pool-riffle sequence is an important feature of river channels that has significant
hydrologic and ecological functions; see e.g., (Allan and Castillo 2007; Gregory et
al. 1994). Pool-riffle channels consist of alternations between shallow areas of higher
velocity and mixed gravel-cobble substrate, called riffles, and deeper areas of slower
velocity and finer substrate, called pools. Typically they are found in moderate to
low gradient, unconfined, gravel-bed streams (Allan and Castillo 2007). In this work,
we will consider a stream or river with a constant bottom slope or with periodically
alternating pool-riffle channels.

Temporal heterogeneity is found in temperature, light, flow discharge and veloc-
ity, and likely in population life-history parameters and in dispersal rates; see e.g.,
(Allan and Castillo 2007). These features influence the species’ growth and spread in
upstream and downstream directions. For instance, early summer water discharge in
many rivers/streams is high and flow is fast, which makes it difficult for the population
to move to upstream and may decrease the likelihood of persistence of the population.
By way of contrast, late summer and possibly fall and winter discharge can be low,
with slow flow, which helps provide a stable environment for the population to grow
and to move. On the other hand, populations may grow and move more actively in
summer than in winter due to warm temperature and abundant food supply. Thus,
although it is difficult to generalize as to summer or winter is better for a species to
grow or spread, it is clear that the living environment for aquatic species in streams
or rivers varies very much in different seasons, and hence the temporal heterogeneity
should be taken into account when investigating the growth and invasion of a species
in streams or rivers.

Previous work has studied the effects of seasonal variations in population growth
and hydrological characteristics on the spreading speeds of population in an infi-
nitely long river (Jin and Lewis 2012) and critical domain size for a finite river
or river patch (Jin and Lewis 2011); see also (Lutscher and Seo 2011; Seo and
Lutscher 2011). In this work, we will include the temporal variations of flow dis-
charge and hence the flow velocity, water depth, and flow driven diffusion of the
population.

While spatial heterogeneity and temporal heterogeneity have been studied sepa-
rately, we are not aware of any work where their interplay has been investigated. In
fact, through their interaction, a new phenomenon can arise. We term this an invasion
ratchet, where a species can persist in a pool (favorable habitat patch) during adverse
times and can traverse riffles (hostile patches) in the upstream direction during more
beneficial time periods. In a long term, this type of phenomenon could ensure a pop-
ulation’s spread to the upstream and thus invasion and persistence in the whole river.
Although the phenomenon of an ecological ratchet has been invoked in the context of
climate change impacts on ecosystems (Jackson et al. 2009), the idea of a spatial ratchet
phenomenon in rivers is new. In this work, we will study the ratchet phenomenon and
analyze the conditions for the phenomenon to occur.

1.3 Spreading Speeds: Indicators of Population Persistence or Wash-Out

The spreading speed (or asymptotic speed of spread) of a population is a crucial
quantity that describes the speed of invasion of the population in a spatial habitat; see
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Table 1 Overview of reaction-diffusion-advection models related to this work

Temporally constant high/low fluctuations

Spatially uniform Speirs and Gurney and earlier
works (Aronson and
Weinberger 1975; Fisher 1937;
Speirs and Gurney 2001) (EF)

Lutscher and Seo (2011) (EF)

Alternating patches (with
piecewise constant
water depths)

Lutscher et al. Lutscher et al. (2006) (EF) In this manuscript (EAS)

Constant bottom slope In this manuscript (EF) In this manuscript (EF)

Varying bottom slope In this manuscript (ES) In this manuscript (ES)

Two-dimensional
hydraulic river models

In this manuscript (S) In this manuscript (S)

E: proof of existence of a spreading speed; F: explicit formula for a spreading speed;
A: approximation of a spreading speed; S: simulation of a spreading speed

e.g., (Aronson and Weinberger 1975; Jin and Lewis 2012; Liang et al. 2006; Liang
and Zhao 2007; Lutscher et al. 2006, 2010; Weinberger 2002). For aquatic species,
the calculation of positive spreading speed in the upstream direction has been used to
estimate whether it can persist in the habitat or will be washed out; see e.g., (Jin and
Lewis 2012; Lutscher et al. 2006, 2010). The solution to the drift paradox problems
in terms of spreading speeds says that a population can spread to the upstream if its
upstream spreading speed is positive in the upstream direction, and thus can persist if
the flow velocity is below some critical flow rate; see e.g., (Lutscher et al. 2005, 2006;
Pachepsky et al. 2005).

A conjecture that has been made in (Lutscher et al. 2010) says that “a population
can persist at any location in a homogeneous habitat if and only if it can invade
upstream”. It essentially indicates the mathematical equivalence of the conditions
for upstream invasion and for persistence in spatially homogeneous habitats. This
conjecture has been verified for many models, including those with temporally varying
flows coupled to spatially homogeneous habitats (Jin and Lewis 2012, 2011; Lutscher
and Seo 2011). It also holds for some models that relax the assumption of habitat
homogeneity but assume constant flow. For example, Lutscher et al. (2006) found that
temporally constant flows coupled to spatially heterogeneous habitats yielded identical
conditions for upstream invasion and persistence.

The situation we focus on in this paper involves temporally varying flows coupled
to spatially heterogeneous habitats. We show that the conjecture regarding the equiv-
alence of the conditions for upstream invasion and for persistence cannot actually be
extended to cover this situation. We give numerical evidence that the population will
persist in the river, even when it is unable to spread upstream. Here the upstream
ratchet mechanism appears to stall well before the population is washed out, and the
population persists even though it cannot invade.

Reaction-diffusion-advection models have been used to model population dynamics
in streams or rivers. For convenience, we summarize some results about population
spread and persistence in Table 1; the results are mainly about spreading speeds and
focus on spatial and temporal variability (rows and columns, respectively). In this
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work, we fill the gap of combined spatial and temporal heterogeneity. Moreover, we
consider more realistic spatial river structures based on channel bed slopes and 2D
simulation models.

1.4 Paper Outline

In this paper, we demonstrate the ratchet phenomenon in a suite of increasingly com-
plex models. In Sect. 2, we present stream population models in temporally and spa-
tially homogeneous and heterogeneous habitats as well as the results of spreading
speeds for the models. In Sect. 3, we employ a reaction-diffusion-advection model for
the density of an aquatic species in a river consisting of alternating good-bad patches
(Lutscher et al. 2006). We add temporal fluctuations in the discharge. The simplicity
of this model allows us to obtain insightful conditions for an invasion ratchet. In the
following Sections, we extend the model by including water depth derived from the
hydrologic equation for a periodic pool-riffle river and a river with uniform flow in
temporally constant and temporally varying flows.

To this end, Sect. 4 revisits an ordinary differential equation for the water depth of
a gradually varied flow in (Chaudhry 1993). In Sect. 5, we substitute the water depth
derived from the hydrologic equation into a population model. Considering only tem-
poral variations in flow, we obtain spreading speeds in the upstream and downstream
direction in temporally constant and temporally fluctuating flows. In Sect. 6, we addi-
tionally introduce spatial heterogeneity. We consider a spatially periodic pool-riffle
river, derive the water depth, and substitute it into a population model. This allows us
to study the effects of different biological and environmental factors on the spreading
of the population. In particular, we show how periodic high/low flow fluctuations lead
to the ratchet phenomenon in spatially alternating rivers.

In Sect. 7, we present a spatially two-dimensional hydraulic simulation model
(River2D) coupled with a benthic-drift population model. Again, we demonstrate
the invasion ratchet phenomenon, this time in a river with “real” hydrology. Finally,
Sect. 8 discusses the methodological advances of our modeling approaches and puts
them into the context of ecohydrology and environmental flow assessment. Moreover,
we relate the invasion ratchet to the existing ecological theories, assess its robustness,
and explore empirical evidence.

2 Population Models in Rivers/Streams and Spreading Speeds

In this section, we introduce partial differential equations that have been or can be used
to describe population dynamics of stream species in homogeneous or heterogeneous
environments. Here, spatial heterogeneity is represented by an idealized hydrodynamic
equation that links river’s cross-sectional area to flow speed, and temporal variability
is taken into account by temporally varying discharges. We begin with a model that
is homogeneous in time and space, and then add step-wise spatial and temporal vari-
ability. We will use these models throughout this paper, and they will later be made
more “realistic” by coupling them to hydrological equations.
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2.1 The Model in Temporally and Spatially Constant Environments

The following reaction–diffusion–advection equation was proposed to describe the
dynamics of a stream species in a temporally and spatially constant environment
(Speirs and Gurney 2001):

∂N

∂t
= D

∂2 N

∂x2 − v
∂N

∂x
+ f (N )N , (1)

where N = N (x, t) is the population density at time t and longitudinal downstream
location x , D is the diffusion coefficient, v is the flow velocity, and f (N ) is the per
capita growth rate. Note that if we assume that the population can reside on the benthos
and move in the flow, then (1) can be derived by combining a benthic-drift system
when the transfer rates between benthos and flow become large [see (Pachepsky et al.
2005) and Appendix 1].

We assume compensatory population growth to a carrying capacity N∗, i.e. f (N )
satisfies that sup

N≥0
f (N ) occurs at N = 0, f (N∗) = 0 for some N∗ > 0, f (N ) > 0

for N < N∗, and f (N ) < 0 for N > N∗. Let r = f (0) be the intrinsic per capita
growth rate when the population is rare. Throughout the paper, we assume that when a
growth function f is mentioned it satisfies these conditions. As a particular example,
we choose the logistic growth model, f (N ) = r(1 − N/K ), with intrinsic per capita
growth rate r and carrying capacity K .

Assume that the population is introduced locally in a spatial interval of the river.
The asymptotic spreading speeds for (1) in the upstream and downstream directions
are determined by the linearization of (1) at N = 0 (linearly determined spreading
speeds) and are given by

c− = 2
√

Dr − v and c+ = 2
√

Dr + v, (2)

respectively [see (Pachepsky et al. 2005)]. Therefore, in a spatially and temporally con-
stant environment, the population spreads asymptotically to the upstream and down-
stream at constant speeds and never changes spread directions.

2.2 Models in Temporally or Spatially Heterogeneous Environments

The following partial differential equation is based on Bencala and Walters Bencala
and Walters (1983) and has been proposed by Lutscher et al. Lutscher et al. (2006) to
describe population growth and movement in a spatially heterogeneous river. The idea
is to model longitudinal spread in a river while taking account of its spatial variability.
This is achieved by linking river’s cross-sectional area to flow speed. The idealized
hydrodynamic population model reads

∂N

∂t
= 1

A(x)

∂

∂x

[
D(x)A(x)

∂N

∂x

]
− Q

A(x)

∂N

∂x
+ f (N )N , (3)

where the diffusion coefficient D(x) depends on the spatial location, Q is the water
discharge, and A(x) is the spatially varying cross-sectional area. Similarly as we did for
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(1), we can also derive (3) from a benthic-drift model when the transfer rates are very
large (see Appendix 1). In (Lutscher et al. 2006), a spatially periodic piecewise river
was considered for (3), and constant spreading speeds in the upstream and downstream
directions were obtained, which implies that under a temporally constant flow, the
population spreads asymptotically at constant speeds to the upstream and downstream
directions. Generally, the existence of spreading speeds for (3) in the upstream (c−) and
downstream (c+) directions follows from the abstract theory for spreading speeds for
a semiflow defined in a periodic habitat in (Liang and Zhao 2010) [see also (Berestycki
et al. 2005; Weinberger 2002)]. Moreover, the spreading speeds in the upstream and
downstream directions are also the minimal wave speeds for spatially periodic traveling
waves in corresponding directions. See Appendix 6 for details.

Organisms in streams are involved in two types of diffusion: bio-diffusion Db(x),
which describes the individuals’ active mobile ability that may not depend on the
flow (Okubo and Levin 2001), and flow driven diffusion D f (x), which describes the
individuals’ passive diffusion driven by the water flow (Fischer et al. 1979). Therefore,
in this paper, we will use both bio- and flow-driven diffusion

D(x) = D f (x)+ Db(x). (4)

Now, we extend model (3) by including water flow Q(t) that varies slowly in time.
Then, the diffusion rate and the cross-sectional area of the river may vary accordingly
in time. Hence, the conservation of population leads to the following model:

∂N

∂t
= −∂A(t, x)

∂t
· N

A(t, x)

+ 1

A(t, x)

∂

∂x

[
D(t, x)A(t, x)

∂N

∂x

]
− Q(t)

A(t, x)

∂N

∂x
+ f (N )N . (5)

If the water discharge Q(t) is assumed to vary periodically in time with period T , then
A(t, x) and D(t, x) are also time-periodic with period T . We can define a periodic
semiflow for (22) and then apply the theories in (Liang et al. 2006; Liang and Zhao
2010; Weinberger 2002) to obtain the existence of spreading speeds and periodic
traveling waves (See Appendix 6 for approximations).

3 The Invasion Ratchet in a Parsimonious Model

An invasion ratchet allows species to persist in favorable habitat patches during adverse
times and to traverse hostile patches in an upstream direction during beneficial times. In
this section, we investigate the invasion ratchet in the model combining both temporal
and spatial variability, based on the ideas introduced in the previous section. Precise
conditions for the occurrence of the invasion ratchet cannot be derived rigorously,
but we obtain approximations for such conditions based on an analysis of asymptotic
spreading speeds of the species in constant flows. The aim of this section is therefore
to derive ratchet conditions in a model as simple as possible.
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3.1 Model Specification

To investigate the interaction between temporal and spatial variability, we simplify
Eq. (5) to give a minimal model that still exhibits temporal variability in flow rate
Q(t) and spatial variability in cross-sectional area A(x). To this end, we allow the
discharge to vary in time (e.g. due to seasonality) and assume the simplest case of a
periodic alternation of piecewise constant discharges

Q(t) =
{

Q1, ift ∈ [0, T1)+ T N,

Q2, ift ∈ [T1, T )+ T N,
(6)

where T = T1 + T2. The time intervals [0, T1) + T N and [T1, T ) + T N represent
two different flow seasons that will be used to define temporally fluctuating flows
throughout the paper. This simply means that each year can be divided into two seasons
of duration T1 and T2, and the water discharge is a constant (Q1 or Q2) in each season.
The habitat is assumed to vary spatially periodically; see also (Lutscher et al. 2006).
Each periodic patch consists of two regions with different wetted cross-sectional area
A(x). So, A(x) can be written as

A(x) =
{

A1, ifx ∈ (0, L1)+ L Z,

A2, ifx ∈ (L1, L)+ L Z,
(7)

where L = L1 + L2 is the period length of the habitat, and [0, L1) + L Z and
[L1, L)+ L Z represent the two different habitat types on the infinite domain. Here, Z

and N represent integers and natural numbers, respectively. Furthermore, we assume
that the diffusion rate D(x) is a constant, i.e., D(x) ≡ D, and the population growth
rate f (t, x, N ) is spatially and temporally independent, i.e., f (t, x, N ) ≡ f (N ). We
assume that there are no lateral flows, which implies that the discharge and the cross-
sectional area are related as ∂A(x)/∂t = −∂Q/∂x . As for the matching conditions,
we assume that the population density and the flux are continuous at the boundaries
of different types of habitats. That is,

lim
x↑L1 j

N (t, x) = lim
x↓L1 j

N (t, x), lim
x↑L j

N (t, x) = lim
x↓L j

N (t, x),

and

lim
x↑L1 j

J (t, x) = lim
x↓L1 j

J (t, x), lim
x↑L j

J (t, x) = lim
x↓L j

J (t, x),

where J (t, x) = D(x)A(x) ∂N
∂x − Q(t)N is the flux, L1 j = L1 + j L , and L j =

j L , j ∈ Z. With such assumptions, we can define continuous semiflows and hence
investigate spreading speeds for (3) and (5).

3.2 Model Analysis

In this subsection, we approximate conditions for the invasion ratchet phenomenon in
a pool-riffle habitat under alternating flows. These are based on formulas of upstream
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Table 2 Upstream spreading
speeds in pool-only and
riffle-only habitats under
constant flows

Area High flow (Q1) Low flow (Q2)

A1 (pool) c−
11 = c − Q1

A1
c−

12 = c − Q2
A1

A2 (riffle) c−
21 = c − Q1

A2
c−

22 = c − Q2
A2

spreading speeds of a species in infinitely long pool-only and riffle-only habitats under
constant flows.

3.2.1 Upstream Spreading Speeds in Pool-Only and Riffle-Only Habitats

Without loss of generality, we assume A1 > A2 and refer to patches of area A1 as
pools and to patches of area A2 as riffles. We also assume Q1 > Q2. Let c = 2

√
Dr be

the spreading speed determined by diffusion coefficient D and intrinsic growth rate r .
By using (2) with v = Q/A, we can define the upstream spreading speed c−

i j for a
species in a spatially constant habitat with cross-sectional area Ai under a temporally
invariant flow Q j . The formulas are given in Table 2.

3.2.2 Approximation of Invasion Ratchet Conditions

In this subsection, we consider a stream with alternating pool-riffle patches and alter-
nating high–low flows as introduced in Sect. 3.1. Recall that the period of the habitat
is L with pool length L1, and riffle length of L2, and that the time period for flow
fluctuation is T with high-flow season length of T1 and low-flow season length of T2.

We use the upstream spreading speeds for the different situations obtained in the
previous subsection to approximate the speed of spread to the upstream within each
patch. That is, we use c−

11 to approximate the speed of spread of the species in the
pool in the high flow season, c−

12 to approximate the speed of spread of the species
in the pool in the low flow season, and the other c−

i j s for the other situations. Note

that c−
21 < {c−

11, c−
22} < c−

12, which means that upstream invasion is more likely to be
observed in pools and for low discharges than in riffles and for high discharges.

Then we approximate conditions for the invasion ratchet phenomenon in such a
habitat configuration. The result is only an approximation since the actual speed of
spread within each patch is not the same as the spreading speed in an infinitely long
habitat.

There are two necessary conditions for the invasion ratchet. The first one is that
the population can always persist in the pools, under both high and low flows. This
condition is approximated by

c−
11, c−

12 > 0.

In our case, the pools can be regarded as good patches and the riffles as bad patches.
The crucial question is now whether the population can traverse the riffle to arrive at
the next pool. Therefore, the second condition is that the population cannot survive in
riffles at times of high discharge but can invade riffles at times of low discharge. This
condition is approximated by
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c−
22 > 0 and c−

21 < 0.

If the population invades the riffle during low discharge times, it needs to arrive at the
next pool to ratchet upstream. That is, the time of low discharge needs to be sufficiently
long to allow the population to traverse the length of the riffle. Mathematically we can
express this as

T2 ≥ L2

c−
22

=: T ∗
2 ,

where T ∗
2 corresponds to the minimum time length of low discharge for a ratchet step

to occur. Note that this criterion only depends on properties of the riffle length and
cross-sectional area (L2, A2) and the low discharge flow and duration (Q2, T2) as well
as biological growth rate and diffusion coefficient (r, D) which gives the reaction-
diffusion front speed c = 2

√
r D.

Figure 1 shows examples of upstream range expansion (see Appendix 2) for two
different time lengths of low discharge, T2. In Fig. 1a, T2 is below the critical value
T ∗

2 . Thus, the population starts invading the riffle during low discharges but cannot
reach the pool. Hence, the population is washed back to its foothold in the downstream
pool where it remains until the next low discharge period. This is a situation where we
see the population stalling in the river, but it cannot spread upstream, thus indicating
that the conjecture of Lutscher et al. (2010) does not apply here. Fig. 1b displays
upstream invasion for a longer period of low discharge T2 > T ∗

2 . During this time, the
population traverses the riffle and arrives at the next pool upstream, where it persists
during high discharges and from where it can start to ratchet up the next riffle during
the next low discharge period. As already indicated, the critical time length is an
approximation. For the simulation shown here, the approximated value is T ∗

2 = 120
and thus somewhat larger than the numerically observed one (103).

The invasion ratchet can also be caused by a number of different mechanisms that
are not taken into account here, e.g. seasonality and spatial variability in population
growth rather than in the discharge or in the habitat. Also, if there is an Allee effect,
the spreading speeds will no longer be linearly determined, although it may still be
possible to obtain an approximation of invasion ratchet conditions.

The terminology used here indicates that the organisms we consider in this paper are
those preferring to live in slow-moving or still water such as phytoplankton, mayfly
nymphs, dragonfly nymphs, damselfly nymphs (Odonata), and water boatman. For
these organisms, pools are their favorite habitats but riffles are not. If, instead, one
would like to consider organisms preferring fast-moving water, then riffles should be
considered as favorable habitats.

4 The Water Depth in Gradual Flows

In this section, we revisit an equation governing the water depth in river hydrology.
This takes into account the river morphology and in particular its spatial arrange-
ment. Later on, we will feed the water depth into the population models introduced
earlier.
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(a)

(b)

Fig. 1 Upstream range expansion (solid line) of a population with logistic growth. The dotted line indicates
periods of low and high discharges on a different scale. Parameters are: Q1 = 5, Q2 = 1, T1 = 1000,
L1 = 400, L2 = 50, r = 0.5. The critical value T ∗

2 = 120. a T2 = 100, so T2 < T ∗
2 . b T2 = 140 so

T2 > T ∗
2
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Consider a river in a one dimensional space. Let x (unit: m) represent the longitu-
dinal location along the river and y(x) (unit: m) be the water depth at location x . The
governing equation for the gradually varied flow is given by

dy

dx
= S0(x)− S f (y)

1 − F2
r (y)

(8)

[see (5–7) in (Chaudhry 1993)], where S0(x) is the slope of the channel bed at loca-
tion x , S f is the friction slope, i.e., the slope of the energy grade line or approximation
of the water surface slope, Fr is the Froude number, which is defined as the ratio
between the flow velocity and the water wave propagation velocity and is used to
determine the resistance of a partially submerged object moving through water. S0,
S f , and Fr are all dimensionless. Assume that the river has a rectangular cross section
with a constant width B (unit: m) and height y(x). By substituting expressions of S f

and Fr into (8) (see Appendix 3 for details), we obtain

dy

dx
=

gk2 y
10
3 S0(x)− n2

(
Q
B

)2
g

k2gy
10
3 −

(
Q
B

)2
k2 y

1
3

, (9)

where Q (unit: m3/s) is the flow discharge, g = 9.8 (unit: m/s2) is the gravitational
acceleration, k = 1 is a dimensionless conversion factor, and n (unit: s/m1/3) is
Manning’s roughness coefficient, which depends on many factors, including the bed
roughness and sinuosity, and represents the resistance to water flows in channels. See
(Chaudhry 1993) for more hydrological details.

In the following sections, we assume a subcritical flow in the river, which hydro-
logically means a flow in which the water velocity is less than the wave velocity in
water (Chaudhry 1993). This is equivalent to assuming that the Froude number Fr is
less than one in Eq. (8).

5 Population Spread and Persistence in a Spatially Uniform Flow

We now apply the water depth Eq. (9) to a spatially uniform flow in a stream with
a constant bed slope. In this section, we ignore spatial heterogeneity, but consider
temporally fluctuating flows. However, we begin with a temporally constant flow.
Throughtout this section, we will investigate spread and persistence of a species in
the different flows by virtue of studying the upstream spreading speed of a related
population model with temporally constant or fluctuating habitat.

5.1 The Population Model for Temporally Constant Flow

Consider a river with a constant bed slope S0. As in the previous Section, we assume
that the river has rectangular cross sections with constant width B. The water depth is
stabilized at the normal depth
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yn =
(

Q2n2

B2S0k2

) 3
10

, (10)

and we call the flow in the river a uniform flow; see Appendix 4 and (Chaudhry 1993).
Then the wetted cross-sectional area of the river is A = Byn . This is how we feed the
water depth into the population model (3). The latter becomes

∂N

∂t
= D

∂2 N

∂x2 − Q

Byn

∂N

∂x
+ f (N )N . (11)

The spreading speeds for (11) in the downstream and upstream directions are respec-
tively

c± = 2
√

Dr ± Q

Byn
. (12)

From this, we obtain that c− ≥ 0 if and only if

r ≥ Q2

4B2 y2
n D

. (13)

Therefore, (13) is the condition for the population to spread upstream in a river under
a uniform flow. Note that the flow velocity v = Q/(Byn). Hence, condition (13) is
equivalent to 4Dr ≥ v2.

Before investigating the condition for population spread in more detail, we need to
specify the diffusivity. Assume that the bio-diffusion rate (see Sect. 2.2) is a constant,
i.e., Db(x) ≡ Db. According to the mechanics of dye dilution in water, the flow driven
diffusion process is described by

D f (x) ≡ D f = aynu∗ (14)

[see Sect. 5.2.1 in (Fischer et al. 1979)], where a is a constant that varies in different
rivers, and u∗ = √

yn S f g is the shear velocity. We choose a = 0.5 in this paper. The
expression for S f can be found in (32). Then the diffusion constant in a uniform flow
is

D = Db + D f = Db + 0.5nQg
1
2

k By
1
6
n

. (15)

Substituting (15) into (12) and (13), we obtain

c± = 2

√√√√r

(
Db + 1

2
g

1
2 n

9
10 S

1
20
0

(
Q

B

) 9
10

)
± S

3
10
0

n
3
5

(
Q

B

) 2
5

.

123



Seasonal Invasion Dynamics

Table 3 Influence of different environmental and biological factors on population spread to the upstream

Factor Effect on upstream spread

Intrinsic growth rate (r ) +
Bio-diffusion (Db) +
Channel slope (S0) −
Manning’s roughness coefficient (n) +
Water discharge per unit width (if Q

B < q0) −
Water discharge per unit width (if Q

B > q0) +
“−” means that the factor has a negative effect on the upstream invasion, i.e., when the factor increases, it
is harder for the population to spread to the upstream; “+” means that the factor has a positive effect on the
upstream invasion, i.e., when the factor increases, it is easier for the population to spread to the upstream
and hence to persist in the whole river. Here q0 is the value of q such that c− attains its minimum when c−
is considered as the function of q0

Now we are in the position to study the influence of different environmental and
biological factors on the spread and persistence of a species in a uniform flow. The
results are summarized in Table 3.

As for the biological factors, both the intrinsic growth rate and the bio-diffusion have
positive effects on population persistence. The remaining parameters concern envi-
ronmental and river morphological factors. The steeper the river bottom, the harder
it is for the population to persist. Recall that the value of the Manning roughness n
depends mainly upon the bottom roughness, amount of vegetation, and channel irregu-
larity, and to a lesser degree, upon stage, scour and deposition, and channel alignment
(Chaudhry 1993). n performs as resistance to the washout of the population. Then
the larger the Manning roughness n is, the easier it is for the population to spread
to the upstream. The parameter combination Q/B represents the water discharge per
unit width. The upstream spreading speed c− decreases and then increases for the
increasing Q/B; hence c− attains its minimum at some q0. If the water discharge
per unit width is low (Q/B < q0), then the water depth is very low, and the flow
velocity is relatively large. In this case, when the discharge increases, the increase in
diffusion (in terms of

√
2Dr ) is less than the increase in downstream advection (in

terms of v), so the upstream spreading speed decreases, and hence, it becomes harder
for the population to spread to the upstream. However, if the water discharge per unit
width is high (Q/B > q0) and increases, then the water depth becomes very high
and the increase in downstream advection is less than the increase in diffusion, so the
upstream spreading speed increases and the water discharge per unit width becomes
a positive factor for population persistence in this case.

5.2 The Population Model for Temporally Fluctuating Flow

Now we replace the temporally constant flow by a water flow that varies periodically
and is defined in (6) with Q1 in high flow seasons of duration T1 and Q2 in low flow
seasons of duration T2. Then the normal depths in the different seasons are y1

n and y2
n ,

which can be defined by replacing Q in (10) with Q1 or Q2, respectively. Moreover, if
population growth is qualitatively logistic (as described in Sect. 2.1), it follows from
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the results in (Lutscher and Seo, 2011, Sect. 3) that if the coefficients in model (11)
with temporally constant flow are temporally periodically varying, then the upstream
and downstream spreading speeds are given as

c± = 2
√

r〈D〉 ±
〈

Q

Byn

〉
, (16)

where 〈·〉 means the arithmetic average of the quantity over a time period with

〈D〉 = Db + 0.5 n9/10 g1/2 S1/20
0 ·

(
Q1
B

)9/10
T1 +

(
Q2
B

)9/10
(T − T1)

T
,

and

〈
Q

Byn

〉
= S3/10

0

n3/5
·
(

Q1
B

)2/5
T1 +

(
Q2
B

)2/5
(T − T1)

T
.

Hence, the upstream spreading speed is positive (c− ≥ 0) if and only if

r ≥
〈

Q
Byn

〉2

4〈D〉 , (17)

which can be considered as the persistence condition for a species in a periodically
fluctuating flow. Condition (17) is actually 4〈D〉r ≥ 〈v〉2, where 〈v〉 is the average
flow velocity. Figure 2 shows an example of the relation between c− and Q1/B as
well as Q2/B. In the figure, (17) holds in the region below the contour line c− = 0.
It is not hard to see from (16) that c− is an increasing function of Db and r and that if
the ratio between T1 and T is fixed, then the length of T does not change the value of
c−. Figure 3 also shows the relationships between c− and other factors. We see that
c− is a decreasing function of the river bottom slope S0, but is an increasing function
of the Manning coefficient n. If the length of a flow period is fixed, then the longer
the high flow season is, the smaller the upstream spreading speed is, and hence, the
harder the population can spread to the upstream.

6 Population Spread and Persistence in a Spatially Heterogeneous River

In this section, we consider spatial variability in the physical characteristics of the
river. To be more precise, we assume a spatially periodic pool-riffle river, which results
from spatially varying channel bed slopes. Before studying the population models with
both temporally constant and fluctuating flows, we have to derive the water depth for
a spatially heterogeneous river.
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Fig. 2 The relation between upstream spreading speed c− and high and low discharges per unit width
(q1 = Q1/B and q2 = Q2/B, respectively) for a spatially uniform river with constant bed slope. A
positive (negative) upstream spreading speed corresponds to population persistence (wash-out). Parameters:
g = 9.8 m/s2, k = 1, n = 0.1 s/m1/3, S0 = 0.000004, Db = 0.5 m2/s, r = 0.0001982 /s, T = 31536000
s (i.e., 1 year), T1 = 3T/4

6.1 A Spatially Periodic Pool-Riffle River

Assume that the river has a spatially varying channel bed slope S0(x) that is a periodic
piecewise function:

S0(x) =
{

S0r , mL ≤ x < mL + L1,

S0p, mL + L1 ≤ x < (m + 1)L ,
(18)

where m is any integer and S0r > S0p. Recall that for a pool-riffle river, a pool
represents the area with deep water and a riffle represents the area with shallow water
(Allan and Castillo (2007)). In this section, for simplicity, we use a riffle to represent
a piece of river channel with a steeper bed with slope S0r and a pool to represent a
piece of channel with a flatter bed with slope S0p; see Fig. 4. Therefore, the river
consists of periodically alternating pool-riffle channels with period L (unit: m), and
each periodic patch contains a riffle channel with length L1 (unit: m) and a pool channel
with length L2 (unit: m) (i.e., L = L1 + L2).

6.2 The Water Depth in a Spatially Periodic Pool-Riffle River

We now have to consider the water depth Eq. (9) in conjunction with the spatially
periodic river structure (18). Mathematically, there exists a unique periodic solution
to (9, 18), which is the periodic extension of the solution to
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 3 The relation between upstream spreading speed c− and various biological and environmental
parameters of a spatially uniform river with temporally fluctuating flow. Parameters are: g = 9.8 m/s2,
Q2/B = 0.0001 m2/s, Q1/B = 0.0002 m2/s, and a r = 0.0001/s, n = 0.03, T = 31536000 s,
T1 = T/2, S0 = 0.0001; b n = 0.03, Db = 0.5 m2/s, T = 31536000 s, T1 = T/2, S0 = 0.0001, c
n = 0.03, Db = 0.5 m2/s, r = 0.0001/s, T = 31536000 s, T1 = T/2, d Db = 0.5 m2/s, r = 0.0002/s,
T = 31536000 s, T1 = T/2, S0 = 0.00002, e Db = 0.5 m2/s, r = 0.0002/s, n = 0.03, T1 = T/2,
S0 = 0.0001, f Db = 0.5 m2/s, r = 0.0001/s, n = 0.03, T = 31536000 s, S0 = 0.0001

⎧⎪⎨
⎪⎩

dy

dx
= gk2 y

10
3 S0(x)− n2(Q/B)2g

k2gy
10
3 − (Q/B)2k2 y

1
3

, withS0(x)definedin(6.1),

y(0) = y(L).

(19)

This is a boundary value problem; the existence and uniqueness of its solution and
the numerical method to obtain it are included in Appendix 5. Moreover, this periodic
solution is stable to perturbations in the downstream flow conditions; see Fig. 11 in
Appendix 5. This indicates that the water depth at the far upstream end, which is
a large number of channel periods away from the downstream end, asymptotically
approaches the periodically varying water depth, i.e., the periodic solution to (9,18).
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Fig. 4 Left the water depth y(x) in a periodic patch of the river in the example. For water discharge Q =
50 m3/s, y(0) = y(300) = 0.7652 m, y(100) = 1.2071 m; for Q = 2 m3/s, y(0) = y(300) = 0.0867 m,
y(100) = 0.3654 m. Right the elevation of river bed and water surface in two periodic patches of the river
(longitudinally sectional view). The riffle region and the pool region are indicated in the first periodic patch

Therefore, we assume that the water depth varies periodically in the river and that in
each period it satisfies (19).

Example Assume a spatially periodic pool-riffle river with lateral width B = 50m,
riffle length L1 = 100 m, pool length L2 = 200 m, riffle bed slope S0r = 0.005, and
pool bed slope S0p = −0.001. We obtain the periodic steady state flow of the river
by solving (19). The water depths for different water discharges are shown in Fig. 4a,
which indicates that the water depth increases in the riffles and decreases in the pools.

Note that in general, both water depth and velocity increase but the relative variation
between the pool and riffle depths and velocities decrease with increasing discharge
(see Fig. 4b).

6.3 Population Model for Temporally Constant Flow

We now assume a constant water discharge in the spatially periodic pool-riffle river.
We obtain a population model by feeding the solution to the periodic water depth Eq.
(9,18) into the idealized hydrodynamic Eq. (3), using that A(x) = By(x). The result
is:

∂N

∂t
= 1

y(x)

∂

∂x

[
D(x)y(x)

∂N

∂x

]
− Q

By(x)

∂N

∂x
+ f (N )N , (20)

where f is chosen as the logistic growth and the flow driven diffusion (cf. (15)) is now
spatially non-uniform

D(x) = Db + 0.5nQg
1
2

k B(y(x))
1
6

. (21)

In Appendix 6 we show that, even though we can define spreading speeds theo-
retically, it is difficult to calculate them when there are variations in space and time.
Therefore, based on the existence of spreading speeds, we will find numerical solu-
tions for the model (20) and use the upstream extents (see Appendix 2) at different
times to approximate the population’s upstream invasion. Since we arbitrarily choose
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a threshold value 10−2 for the range extent, the obtained numerical extents may not
be the exact real biological extents, but the qualitative change of upstream extent still
indicates whether or not the population spreads to the upstream.

In the following, we give a numerical example to show how different biological and
environmental factors affect the upstream invasion of a species in the current model.
The river is assumed to occupy the interval [0, xL ]. The boundary conditions are
assumed to be the zero flux condition at the upstream end and the free flow condition
at the downstream end. That is,

[
v(x)N − D(x)

∂N

∂x

] ∣∣
x=0 = 0 and

∂N

∂x
|xL = 0,

where v(x) = Q/A(x) is the flow velocity (Chaudhry 1993). We incorporate the
numerical results for the periodic water depth y(x) from (19) into (20) and solve it
with the finite difference method with Matlab. The upstream extents for (20) under
different parameter conditions are shown in Fig. 5, and the effects of different factors
on the population’s upstream spread are summarized in Table 4.

The population may be washed out at high flow (high discharge) but can spread
to the upstream at sufficiently low flow; see Fig. 5a. The bio-diffusion represents the
active movement of individuals, so it helps the population spread to the upstream.
The species can be washed out if the bio-diffusion is very small, while it can spread
to upstream if its bio-diffusion is sufficiently large; see Fig. 5b. Given a fixed ratio
between the lengths of a pool and a riffle, when the length L of a patch period becomes
larger, it is easier for the population to spread to the upstream and hence to persist in
the whole river; see Fig. 5c. Similarly, if the riffle length is fixed, then the longer the
pool length is the easier it is for the population to spread to the upstream. The intrinsic
growth rate also helps the population spread to the upstream; see Fig. 5d.

6.4 Population Model for Temporally Varying Flow

Finally, we combine the spatially periodic river structure with water flow that is variable
in time. To this end, we feed the water depth into the idealized hydrodynamic Eq. (5)
for temporally varying flow. The population model becomes

∂N

∂t
= −∂y(t, x)

∂t
· N

y(t, x)

+ 1

y(t, x)

∂

∂x

[
D(t, x)y(t, x)

∂N

∂x

]
− Q(t)

By(t, x)

∂N

∂x
+ f (N )N . (22)

Assume that the water flow varies periodically in time and each period consists of a
high-flow season and a low-flow season. The water discharge Q(t) is as defined in (6).
Then the population model (22) becomes
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(a) (b)

(c) (d)

Fig. 5 The upstream extents for (20) under different conditions, where g = 9.8 m/s2, k = 1, B = 50 m,
n = 0.03 s/m1/3, S0r = 0.005, S0p = −0.001, K = 1000. The initial value is a point source distribution

with N0(x) = 1000 if x = 1450 and N0(x) = 0 otherwise. The range threshold is 10−2. Other parameters
are as follows. a r = 0.00002/s, Db = 0.5 m2/s, L1 = 100 m, L2 = 200 m, Q = 0.022, 0.03, 0.05 m3/s. b
r = 0.00002/s, Q = 0.025 m3/s, L1 = 100 m and L2 = 200 m, Db = 0.3, 0.8, 1.2 m2/s. c r = 0.00002/s,
Q = 0.05 m3/s, Db = 0.5 m2/s, L1/L2 = 1/2, L = 150, 300, 600 m. d Q = 0.05 m3/s, Db = 0.5 m2/s,
L1 = 100 m, L2 = 200 m, r = 0.00002, 0.0001, 0.0002/s. Note that the downstream extents reach the
downstream end (x = 2100) very quickly (in a few hours) in all cases, so when the upstream extent reaches
the downstream end, it actually indicates that the population is washed out in that case

Table 4 Influences of different factors on population spread to the upstream

Factor Effect on upstream spread

Discharge (Q) −
Intrinsic growth rate (r ) +
Bio-diffusion (Db) +
Period of pool and riffle length (L) +
“−” means that the factor has a negative effect on the upstream invasion, i.e., when the factor increases, it
is harder for the population to spread to the upstream and hence the upstream spreading speed decreases;
“+” means that the factor has a positive effect on the upstream invasion, i.e., when the factor increases, it
is easier for the population to spread to the upstream and hence the upstream spreading speed increases
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Fig. 6 The ranges of the population in the upstream for (23) with f (N ) = 0.0001982(1 − N/1000),
g = 9.8 m/s2, k = 1, B = 50 m, n = 0.1 s/m1/3, Db = 0.5 m2/s, L1 = 50 m, L2 = 200 m,
X L = 2, 100 m, T = 31, 536, 000 s (i.e., 365 day), T1 = 3/4T , S0r = 0.00042, S0p = −0.0001. The
initial value is a point source distribution with N0(x) = 1000 if x = 1950 and N0(x) = 0 otherwise. The
range threshold is 10−2. Note that the downstream extent quickly goes to the downstream end although it
is not shown in the figure

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂N

∂t
= 1

y1(x)

∂

∂x

[
D1(x)y1(x)

∂N

∂x

]
− Q1

By1(x)

∂N

∂x
+ f (N )N ,

t ∈ [mT,mT + T1),
∂N

∂t
= 1

y2(x)

∂

∂x

[
D2(x)y2(x)

∂N

∂x

]
− Q2

By2(x)

∂N

∂x
+ f (N )N ,

t ∈ [mT + T1, (m + 1)T ),

(23)

for all m ∈ N, where Di (x) and yi (x) are the diffusion coefficient and water depth,
respectively, corresponding to the water discharge Qi for i = 1, 2.

6.4.1 Numerical Results

In order to see how the species spreads in such a temporally and spatially varying
environment, we solve the population model (23) numerically. Figure 6 shows the
resulting upstream extents for a population for three different flow regimes. If the water
discharge is sufficiently low in both seasons (e.g., Q1 = 0.92 m3/s and Q2 = 0.2 m3/s),
then the population consistently spreads to the upstream and will be persistent in the
whole river. If the water discharge is sufficiently low in one (“good”) season but not
too high in another (“bad”) season (e.g., Q1 = 1 m3/s and Q2 = 1.026 m3/s), then the
population retreats to the downstream in the high-flow season but spreads upstream
to a larger extent in the low-flow season. As a result, the population will eventually
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stall well in a particular range of the habitat before it is washes out, and hence, the
population will persist even though it cannot invade to the upstream. However, if the
high flow is sufficiently large (e.g., Q1 = 1 m3/s and Q2 = 1.028 m3/s), then the
population will be washed out even though the population can move upstream to some
extent during the first few low flow seasons.

6.4.2 Effects of Spatial Heterogeneity on Population Spread and Persistence

Comparing the preceding results with those for a spatially uniform river under tempo-
rally fluctuating flow (Sect. 5.1), we can elucidate the impact of spatial heterogeneity
on population spread and persistence. Consider Figs. 2 and 6. The latter figure is for a
periodic pool-riffle river; its average channel bottom slope is the same as the constant
slope of the spatially uniform river in the former figure. All the other parameters are the
same. It is shown in Fig. 2 that in the uniform flow, when the water discharges per width
are Q1/B = 0.02 m2/s and Q2/B = 0.0205 m2/s in two flow seasons, respectively,
the upstream spreading speed is negative and hence the population will be washed out.
However, Fig. 6 shows that in the spatially periodic pool-riffle river when Q1 = 1 m3/s
(with Q1/B = 0.02 m2/s) and Q2 = 1.026 m3/s (with Q2/B = 0.0205 m2/s), the
population can spread to the upstream and hence persist in the river. Therefore, we can
conclude that at least in some cases as in the examples given here, spatial heterogeneity
can help the population of a species spread to the upstream and persist in a river.

7 Invasion Ratchet in a 2D Meandering River

In this section, we show an example of an invasion ratchet phenomenon in a two-
dimensional meandering river. We use River2D, which is a hydrodynamic and fish
habitat model developed specifically for use in natural streams and rivers. It is a Finite
Element model, based on a conservative Petrov–Galerkin upwinding formulation. The
hydrodynamic component of the River2D model is based on the two-dimensional,
depth-averaged St. Venant Equations expressed in conservative form. See http://www.
river2d.ualberta.ca/ for more details about River2D.

7.1 Model specification

We consider a species in a spatially two-dimensional river (longitudinal-lateral). The
dynamics of the population is governed by the following population model, which is
the 2D version of (20),

∂N (x, y, t)

dt
= f (N )N + 1

h(x, y)

(
v1(x, y)

∂N

∂x
+ v2(x, y)

∂N

∂y

)

+ 1

h(x, y)

(
∂

∂x

(
Dh(x, y)

∂N

∂x

)
+ ∂

∂y

(
Dh(x, y)

∂N

∂y

))
, (24)
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where the population density N = N (x, y, t) (unit: 1/m3) and water depth h(x, y)
(unit: m) are functions of two-dimensional space (note that in this section y represents
y-coordinate in the x − y plane but not the water depth as in earlier sections). The flow
speed in the longitudinal x and lateral y direction are v1 and v2, respectively (units:
m/s).

The boundary conditions are

N |x=0 = 0,
∂N

∂x
|x=L = 0,

where x = 0 is the upstream end, x = L is the downstream end of the river.
Similarly to (1) and (3), model (24) can be derived from a 2D benthic-drift model

(see Appendix 1). For the following simulations, we implement Eq. (8.5) in Appendix
1 into River2D to calculate the population density. It has the same form as (24), but
rescales the flow dynamics to reflect the approximate proportion of the time spent in
the flow.

7.1.1 River Geometry and Discharge

We consider a 2D meandering river with rectangular cross-sectional areas under peri-
odically fluctuating flows. The river channel is represented by a sine generated curve
θ = θm sin (2πs/Ls), where θ represents the angle between the channel and the lon-
gitudinal line with the maximum θm , s is the length of the river, Ls is a period length
of channel, the lateral bed slope is tan α where α = αm sin (2πs/Ls) with maximum
|αm |. The river is in a seasonally varying environment with time period T , composed
of a low-flow season (kT, kT + T1) and a high-flow season (kT + T1, (k + 1)T ) for
some T1 > 0 and for all k ∈ N. The low flow is Q1 and the high flow Q2.

7.1.2 Parameter Values

In simulations, parameters are chosen as follows. The river length is L = 1, 000 m,
the channel period is Ls = 200 m, the width is 20 m, the longitudinal slope of the
river bottom is S0 = 0.001, θm = π/4, αm = −π/200, r = 1.92/day, K = 1000,
D =0.24 m2/s. The time period is T = 365 days. The low flow season length is
T1 = 270 days and the high flow season length is 95 days. The water depth in the
river when Q = 1 m3/s and when Q = 20 m3/s is shown in Fig. 7. The constant
ς is chosen to be 3599, which makes it possible to consider the time unit as hour in
the simulation for Eq. (29) in River2D. The maximal time step for the simulation is
1 hour. Most nodal points inside the numerical domain are uniformly distributed with
spacing 5 m between each other, but nodes near the boundary are slightly shifted and
the space step on the boundary is smaller than 5 m, for better numerical result.

7.2 Simulation Results

Figure 8 shows an invasion ratchet phenomenon, where the population spreads
upstream when the flow is low and retreats when the flow is high, but in the long
run it spreads to the upstream as well as to the downstream.
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Fig. 7 The water depth (unit: m) in a meandering river with rectangular cross-sectional areas in the cases
of Q = 1 m3/s and Q = 20 m3/s, respectively. The total river length is 1, 000 m, the channel period is
200 m, and the width is 20m

8 Discussion and Conclusions

We have used a hybrid physical–biological modeling approach to connect environmen-
tal hydrodynamics with ecological dynamics. This methodology allows us to investi-
gate the impact of river morphology and flow patterns on the spatiotemporal dynamics
of a population. In the following, we will focus on two major aspects related to our
modeling framework. The first one concerns a methodological progress in integrating
a dynamic population model into the hydrology–biology interface. This strengthens
the ecological component of environmental flow assessments that is currently still
lacking.

Second, we found how spatial heterogeneity, in form of different river bed slopes
leading to pool-riffle sequences, and temporal fluctuations, in form of seasonally vary-
ing discharges, can interact to give rise to the invasion ratchet. This phenomenon has
two effects. On the one hand, during adverse times, it functions as a safeguard to the
population by providing a toe-hold in favorable habitats. On the other hand, during
beneficial times, the population can pass through hostile habitats to arrive at the next
stepping stone. As such, the invasion ratchet is an emergent phenomenon of two dif-
ferent sources of (temporal and spatial) variability. It can facilitate not only population
invasion of the river, but also population persistence to prevent wash-out if the ratchet
stalls.
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Fig. 8 The population density in the meandering river at different times. Results come from River2D with
the population model (29). The total river length is 1, 000 m. The water discharge varies periodically with
a period of T = 365 days. The low-flow season length is T1 = 270 days with Q1 = 1 m3/s, and the
high-flow season length is 95 days with Q2 = 20 m3/s. The other parameters are: f (N ) = r N (1 − N/K )
with r = 1.92/day and K = 1, 000, D = 0.24 m2/s, ς = 3599. The color legend in the figure shows the
population density

The invasion ratchet has important implications for environmental planning and
river management from a practical point of view. Flow control and stream restoration
schemes can be designed to support the ratchet mechanism or to make use of its
safeguarding function. For example, if the aim is to re-introduce a certain species, its
spatial colonization can be supported by low-flow periods of sufficiently long duration,
for example by controlling dams, or shortening the length of critical riffles. Conversely,
if the aim is to prevent the invasion of non-native species or to achieve their eradication,
their toe-holds, for example pools, could be targeted. Importantly, the invasion ratchet
highlights that both spatial heterogeneity and temporal variability, not only in flow
magnitude, but also duration and frequency, are critical for population distribution.

8.1 Methodological Context and Perspectives

Current methods of environmental flow assessment are biased toward the hydrological
side; for references, see the Introduction. For example, complex simulation models like
PHABSIM (Milhous and Waddle 2012) provide detailed descriptions of the physical
habitat, but the link to the biology is based on static habitat suitability models. The
ecological limits of hydrologic alteration (ELOHA) framework (Poff and Zimmerman
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2010) is also based on categorizing streams and rivers into certain classes, depending
on the expected ecological response to hydrological change.

At the other extreme of the spectrum, recent years have seen an increase population
dynamic models of fluvial environments (Hilker and Lewis 2010; Lutscher et al. 2005,
2010; Pachepsky et al. 2005; Pasour and Ellner 2010; Speirs and Gurney 2001), but
they usually oversimplify the hydrodynamics. Only a few studies take into account flow
regimes that vary spatially (Lutscher et al. 2006) or temporally (Jin and Lewis 2012,
2011; Lutscher and Seo 2011; Seo and Lutscher 2011). Moreover, these variations
have been modeled only qualitatively to date, and to our knowledge, have not been
explicitly linked to the specific riverbed structure or the seasonal flow regime, even
though these factors are known to determine the nature of the fluctuating flow (Allan
and Castillo 2007).

Overall, there is a conceptual lack in dynamically coupling the hydrology and
ecology of river flows. There are only few studies that provide a mechanistic coupling
of hydraulic factors to river population models. Hayes et al. (2007) link a hydraulic
model (River2D) via a stream-tube model with a drift-transport model of invertebrates
and a drift-foraging model of consumers, but their simulations are confined to a single
river pool. Anderson et al. (2013) use a detailed hydrological model of a river stretch
in central California that is fed into a particle-tracking algorithm to estimate transport
and settling parameters for a 1D population model.

Here, we have provided a modeling framework to couple hydrodynamics and eco-
logical dynamics directly. The hydrodynamic component in our hybrid model is based
on the water depth in a gradually varying river structure, from which we derive the
advective flow. This is fed into a reaction–diffusion–advection model, which integrates
the population dynamical component. Hence, this approach links hydraulic features
with an ecological model. This opens up the possibility to gain theoretical under-
standing and make quantitative predictions. For example, we have investigated how
different biological and environmental factors, such as discharge, bed slope, Manning
coefficient, water flow per unit width, growth rate, biodiffusion, affect the population’s
spread rate and persistence in the river. For the 2D model, we use the depth-averaged
water flow obtained from a complex simulation model and link it with a population
model. This is similar to the method used by Anderson et al. (2013), but in oder to
account for drift transport we do not fit a diserpersal model to tracking data as in Ander-
son et al. 2013), but instead use equation (29) stemming from a benthos-drift model.

In the existing literature, another related approach is suggested by Booker (2003).
He used a three-dimensional computational fluid dynamics code to simulate flow
patterns and compare them with maximum sustainable swimming speeds of fish, which
were determined in laboratory experiments and defined as the maximum flow velocity
at which a fish can swim for more than 200 min. If the flow velocity is smaller than the
maximum sustainable swimming speed, then fish is considered to be able to spread to
the upstream. This is, in some sense, similar to the central role of the upstream spread
rate in this paper, i.e., when the upstream spreading speed is positive, the population
can spread to the upstream. It should be noted, though, that the upstream spread rate
is an emergent feature of ecological life-history and dispersal traits. As such, it has a
mechanistic foundation and is not restricted to experimental conditions. On the other
extreme, Lytle and Merritt (2004) used a matrix population model, in which they
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allowed flow to affect vital rates. However, they used hydrograph data, i.e., there is a
mechanistic gap in the hydrology.

We have considered river reaches with pool-riffle sequences, which inherently arise
from the underlying river morphology in term of channel bed slope. In fact, pool-
riffle sequences are the dominant bedforms in gravel and mixed bedded channels of
intermediate slope, and they are widely recreated in restoration schemes (Emery et
al. 2003). There are various approaches in the literature that classify rivers structures
into “patches” according to the spatial and temporal dimensions of their hydrological
characteristics (Emery et al. 2003; Thoms and Parsons 2003; Wallis et al. 2012).
However, while this can be used to derive physical biotopes, it lacks a link to population
dynamics.

The hydrodynamic component used here is probably relatively simple in compar-
ison to other, more hydraulically oriented work. The major methodological progress
is the link to the population dynamical component, which has been critically lack-
ing (Anderson et al. 2006; Lancaster and Downes 2010; Shenton et al. 2012). In this
paper, we have considered a single-species population without stage structure, but it is
straight-forward to extend the framework to more complicated ecological models, for
example, taking into account multiple interacting populations or different life stages.

8.2 Variability in Space and Time

In stream ecosystems, it is well established that hydraulic variations in time and space
can affect various species, ranging from periphyton (Reid et al. 2006; Simpson et
al. 2008) over macrophytes (Biggs 1996; Suren et al. 2000) and macroinvertebrates
(Bouckaert and Davis 1998; Lloyd and Sites 2000) to fish (Jungwirth et al. 1995; Labbe
and Fausch 2000). Ecological theory predicts that spatial heterogeneity can decrease or
increase rates of spatial spread, depending on whether the scale of spatial heterogeneity
is greater or smaller than that of dispersal, respectively (Neubert et al. 2000; Schreiber
2010; Shigesada and Kawasaki 1997; With 2002). This has been demonstrated in
experimental streams (Simpson et al. 2008). As for temporal variability, ecological
theory predicts that fluctuations promote the coexistence of species (Chesson 2000).
In spatially extended systems, they are known to produce “shifting mosaics”, which
can further enhance biodiversity.

Temporal fluctuations and spatial heterogeneity are therefore recurring themes in
ecology, because they strongly impact on biodiversity on all levels, from the indi-
viduum over populations and communities to the ecosystem level (Goetze et al. 2008).
However, similarly to the field of ecohydrology, the field of global change ecology
is also largely dominated by correlative niche models. While they are able to reflect
the implications of temporal and spatial variability, these statistical models lack the
process dynamics of mechanistic models to investigate the interaction of temporal and
spatial variability (Gallien et al. 2010; Ibanez et al. 2013). Hence, the combination
of these two sources of variability is rarely studied in ecology, and their interplay is
much less understood.

As already pointed out in the Introduction, the idea of an invasion ratchet in ecology
has been hypothesized by Jackson et al. (2009). While they invoke a number of poten-

123



Seasonal Invasion Dynamics

tial paleoecological candidate examples, they do not provide any quantification, and
the phenomenon we describe is novel in unidirectional flow environments like rivers
and streams. Note that Orrock et al. (2010) also use the term “invasion ratchet”, but the
phenomenon they describe is essentially just an advancing invasion wave. Critically,
this wave lacks the backstop mechanism of a ratchet which provides a safeguard for
the population during adverse conditions.

In principle, the invasion ratchet is not restricted to river reaches considered here.
While it is particularly intriguing in flow-dominated systems (one could also think of
ocean currents, wind, and hill-slopes), flow, as such, is not necessary for the ratchet
mechanism. The ratchet requires two sources of variability, and the negative spread
rates in the “bad” patches during adverse times could also be driven by hostile biotic
or abiotic conditions different from flow, e.g., increased predation pressure in certain
habitat types or in different seasons. It is also easy to imagine the ratchet on different
scales, e.g. within a single pool or entire watersheds, but this will depend critically on
the relative spatial and temporal scales as well as on the life-history traits.

The invasion ratchet appears a plausible phenomenon and may occur in ecosystems.
However, we are not aware of any explicit reports by field biologists. The most related
study we could find is by Labbe and Fausch (2000) who investigated the Arkansas
darter (Etheostoma cragini), a threatened fish, in plains streams of southeast Col-
orado. They found seasonal dynamics in pools that provided refuge to the fish and
river reaches that allowed dispersal. In fact, pools could dry during droughts or be
scoured by large floods. Hence, flow variation between seasons and years could cre-
ate “intermittent stream habitats” and determine habitat connectivity, thus controlling
population growth and dispersal. Another related study is by Stelter et al. (1997). They
modeled the metapopulation dynamics of the grasshopper Bryodema tuberculata, who
occupies gravel bars along braided rivers in the Northern Alps. Catastrophic floods
temporarily wash away the habitats of the species. The model predicts that the timing
between such floods is critical for the species survival.

One reason why there is little empirical evidence for the invasion ratchet available
in the literature may be that field researchers typically monitor invasive spread using
field studies at yearly intervals, which amounts to once per periodic cycle in flow.
In this case, the ratchet would not be immediately apparent. However, the ratchet
phenomenon may become apparent when sampling intensively over fine time intervals.
Data sampling at high resolution in both space and time is costly, though, and there is
typically a trade-off. But it appears that refined technologies are becoming increasingly
available (Fausch et al. 2002; Power et al. 2005).

8.3 Robustness

This paper studies how an invasion ratchet could occur under reasonable biological
assumptions. We start by studying this phenomenon for aquatic species in rivers using
mathematical modeling analysis and approximate conditions in a simple piecewise
river with fluctuating flows. We move to a gradually varying river structure and adopt a
mechanistic equation for gradual water flow to derive the water depth in a river. We then
use the water depth to calculate the advective flow in a reaction-diffusion-advection
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equation model to study population dynamics and invasions in rivers. Here, we include
reasonable hydrologic information into population models to obtain conditions under
which invasion via a ratchet mechanism may occur as a result of the interplay of
periodic spatial variation in the river and temporally varying flow.

Hence, we have established the invasion ratchet phenomenon in a whole suite
of different models, ranging from parsimonious reaction-diffusion-advection models
over hybrid hydrodynamic-biological models to high-resolution simulation in two
dimensions. This provides strong evidence that the invasion ratchet is not an artifact
of a particular model type, but appears to be a robust phenomenon. While the high-
resolution model of a meandering river is clearly more realistic and relies on numerical
simulation, the more conceptual models allowed us to find an explicit formula or
approximations of the spreading speeds, or to prove their existence.

8.4 Summary

The modeling framework presented in this paper closely integrates the physical and
biotic functioning of water flow and river structures. In particular, it provides a
much needed bridge to connect hydraulics with dynamic population modeling and
the advances of ecological theory. The invasion ratchet phenomenon illustrates the
importance of accounting for spatial and temporal variability simultaneously. Our
hybrid modeling approach provides a quantitative and mechanistic framework for the
hydraulic and ecological assessment of rivers. This has the potential to guide water
resources managers in identifying more accurately the targets for flow regulation.

Note that in cases where an invasion does not occur, a possible outcome is a stalled
invasion, where the population may be established in the lower regions of the river, but
cannot spread further up the river (Fig. 1a). This contrasts with previously discovered
outcomes, applicable to spatially homogeneous river models and fluctuating flows or
spatially heterogeneous rivers and constant flows, where invasions either spread up
river or get washed down river, and generically do not stall part way up a river. Our
results (Fig. 1a) provide a counterexample to the concept that a positive upstream
spreading speed is required if a species is to persist in the river (Lutscher et al. 2010).
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Appendix 1: Derivation of Single Models from Benthic-Drift Models

(a) Derivation of (1)

Note that in a river or stream, many species of plankton spend most of the time on the
benthos and little time in the flow (Walks 2007). We may divide the whole population
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into two parts: population on benthos and population in flow, and then describe the
population dynamics by the benthic-drift system [(see (Pachepsky et al. 2005)]

∂Nd

∂t
= μNb − σNd + D

∂2 Nd

∂x2 − v
∂Nd

∂x
,

∂Nb

∂t
= −μNb + σNd + f (Nb)Nb, (25)

where Nb and Nd are population densities on the benthos and in the flow, respectively,
D is the diffusion rate, v is the flow velocity, μ is the transfer rate of individuals from
the benthos to the flow, and σ is the transfer rate from the flow to the benthos. In a
limiting case, when the transfer rates become strong (i.e., σ,μ → ∞ with σ = τμ),
the second equation in (25) yields Nb = τNd, and hence, (25) can be combined into
a single equation:

∂Nb

∂t
= f̃ (Nb)Nb + D̃

∂2 Nb

∂x2 − ṽ
∂Nb

∂x
(26)

with

f̃ (Nb) = f (Nb)

1 + 1/τ
, D̃ = D

τ + 1
, ṽ = v

τ + 1
,

where f , D, and v are the parameters of (25) [see Sect. 6 in (Pachepsky et al. 2005)
for details]. Model (1) is of the same form as (26).

(b) Derivation of (3)

In a spatially heterogeneous habitat, the benthic-drift model becomes

∂Nd

∂t
= μNb − σNd + 1

A(x)

∂

∂x

(
D(x)A(x)

∂Nd

∂x

)
− Q

A(x)

∂Nd

∂x
,

∂Nb

∂t
= −μNb + σNd + f (Nb)Nb, (27)

where A(x) is the cross-sectional area at x (see (Lutscher et al. 2006) for the model
details). Similarly as above, when the transfer rates μ → ∞ and σ → ∞ with
σ = τμ, (27) can be combined into a single model, which has the same form as (3).

(c) Derivation of (24)

In a two-dimensional habitat, the benthic-drift model becomes

∂Nd(x, y, t)

dt
= μ(x, y)

h(x, y)
Nb(x, y, t)− σ(x, y)Nd(x, y, t)
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− 1

h(x, y)

[
∂

∂x
[v1(x, y)h(x, y)Nd(x, y, t)]

+ ∂

∂y
[v2(x, y)h(x, y)Nd(x, y, t)]

]

+ 1

h(x, y)

[
∂

∂x

[
D(x, y)h(x, y)

∂Nd(x, y, t)

∂x

]

+ ∂

∂y

[
D(x, y)h(x, y)

∂Nd(x, y, t)

∂y

]]
,

∂Nb(x, y, t)

dt
= f (Nb(x, y, t))+ σ(x, y)Nd(x, y, t)h(x, y)− μ(x, y)Nb(x, y, t),

(28)

where h(x, y) is the water depth at (x, y), v1, and v2 are the flow velocity in the x and
y directions, respectively. Similarly as above, when the transfer rates μ → ∞ and
σ → ∞ with σ = τμ/h, where τ is a constant, we approximately have nb = τnd.
Then, the summation of the first equation multiplied by τ and the second equation
multiplied by a constant ς ≥ 0 yields

∂Nb(x, y, t)

dt
= f̃ (Nb)Nb − 1

h(x, y)

[
∂

∂x

[
ṽ1(x, y)h(x, y)Nb(x, y, t)

]

+ ∂

∂y

[
ṽ2(x, y)h(x, y)Nb(x, y, t)

]]

+ 1

h(x, y)

[
∂

∂x

[
D̃(x, y)h(x, y)

∂Nb(x, y, t)

∂x

]

+ ∂

∂y

[
D̃(x, y)h(x, y)

∂Nb(x, y, t)

∂y

]]
, (29)

with

f̃ (Nb) = ς f (Nb)

1 + ς
, D̃ = D

ς + 1
, ṽ = v

ς + 1
.

Model (24) has the same form of (29) if f (Nb) = r Nb(1 − Nb/K ).

Appendix 2: The Upstream and Downstream Extents

Definition 1 Assume that a species is introduced into the river at t = 0. The upstream
(downstream) extent (or range) x−

t (x+
t ) at time t is defined to be the most upstream

(downstream) position where individuals are observed at this time.

Remark In simulations, x−
t (x+

t ) is represented by the location where the popula-
tion reaches a threshold detection density Nthresh at time t in the upstream (down-
stream) direction. That is, the first x in the upstream (downstream) direction such that
N (t, x) = Nthresh is defined as x−

t (x+
t ). See Fig. 9.
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Fig. 9 Upstream and downstream extents of a population with density distribution N (t, x) in a river

Definition 2 Assume that a species is introduced into the river at t = 0. The average
speeds of spread of the population in the time interval [0, t] are defined as (x−

0 −x−
t )/t

and (x+
t − x+

0 )/t in the upstream and downstream directions, respectively.

Remark Note that (x−
0 − x−

t )/t → c− and (x+
t − x+

0 )/t → c+ as t → ∞, where c−
and c+ are asymptotic spreading speeds as described in Eq. (2). Therefore, we can use
(x−

0 − x−
t )/t and (x+

t − x+
0 )/t to approximate the speeds of spread of the population

in the upstream and downstream directions. In the simulations in this paper, we simply
use the upstream extent x−

t to describe the upstream invasion.

Appendix 3: The Derivation of the Water Depth Eq. (9)

In a gradually varied flow, the water depth y (unit: m) is non-uniform due to spatially
varying slopes of the river bed. The governing equation for the gradually varied flow
[see (5–7) in (Chaudhry 1993)] is given as:

dy

dx
= S0(x)− S f (y)

1 − F2
r (y)

. (30)

Here, S0 (unit: m/m) is the slope of the channel bed. It varies in space and is considered
as a function of the spatial variable x (unit: m), i.e., S0 = S0(x). Generally, the average
values of S0 are between 0.0002 and 0.008 for big rivers and are slightly larger for
small streams (see Table 5). S f is the friction slope, i.e., the slope of the energy grade
line, or approximation of the water surface slope. It is also spatially varying and can
be determined from the Manning equation

S f = n2v2

k2 R4/3
h

, (31)

where n (unit: s/m1/3) is Manning’s roughness coefficient, varying with basic channel
bed mechanism with values in the order of 0.025–0.050 for rivers and representing the
resistance to water flows in channels, v (unit: m/s) is the water flow velocity, k = 1

123



Y. Jin et al.

Table 5 Parameters in this paper

Parameter Description Unit Typical values

g The gravitational acceleration m/s2 9.8

n The Manning’s roughness coefficient s/m1/3 0.025-0.1 for rivers
(Chaudhry 1993)

v The water flow velocity m/s

k The conversion factor 1 for SI units (Chaudhry
1993)

Rh The hydraulic radius m

A The wetted area m2

P The wetted perimeter m

Fr The Froude number < 1 for subcritical flows
(Chaudhry 1993)

S0 The slope of the channel bed m/m 0.0002-0.008 for big
rivers (Chaudhry 1993)

S0r The slope of the riffle channel bed m/m

S0p The slope of the pool channel bed m/m

Sf The friction slope m/m

B The width of the river m

Q The flow discharge m3/s

t The time variable s

x The longitudinally spatial variable m

y The water depth m

r The intrinsic growth rate /day

K The carrying capacity of the species

L The length of a river period m

L1 The length of a riffle m

L2 The length of a pool m

Db The bio-diffusion rate m2/s

Df The flow driven diffusion rate m2/s

T One time period day 365

T1 The length of the low flow season day

T2 The length of the high flow season day

Q1 The flow discharge in the low flow
season

m3/s

Q2 The flow discharge in the high flow
season

m3/s

is the conversion factor, Rh (unit: m) is the hydraulic radius, which is the ratio of
wetted area A (unit: m2) and wetted perimeter P (unit: m), i.e., Rh = A/P . Fr is the
Froude number that is defined as the ratio between the flow velocity and the water wave
propagation velocity and is used to determine the resistance of a partially submerged
object moving through water. It is a dimensionless parameter. For an arbitrarily shaped
channel,
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Fr =
√

Q2W

g A3 ,

where W (unit: m) is the top width at a particular depth, Q (unit: m3/s) is the flow
discharge, and g = 9.8 (unit: m/s2) is the gravitational acceleration.

Consider a river (or stream) channel with rectangular cross-sections and fixed
width B along one spatial dimension x . Note that for natural rectangular rivers,
the width B is much larger than the depth y (i.e., B � y), and therefore, Rh =
By/(B+2y) ≈ y, so we simply assume Rh = y. It then follows that Q = Av = y Bv,
W ≡ B,

S f = n2v2

k2 R4/3
h

≈ n2v2

k2 y4/3 = n2 Q2

k2 B2 y10/3 (32)

and

Fr =
√

Q2W

g A3 =
√

Q2 B

g A3 = Q

By
√

gy
. (33)

Substituting (32) and (33) into (30), we obtain a first order ODE of the channel depth y:

dy

dx
= gk2 B2 y10/3S0(x)− n2 Q2g

k2 B2gy10/3 − Q2k2 y1/3 = gk2 y10/3S0(x)− n2(Q/B)2g

k2gy10/3 − (Q/B)2k2 y1/3 .

Appendix 4: The Uniform Flow

Assume that the river has rectangular cross sections and a constant bed slope. If the river
channel is long and channel cross sections and the bottom slope do not change with
distance, then the flow accelerates or decelerates for a distance until the accelerating
and resistive forces are equal (Chaudhry 1993). From that point on, the flow velocity
and flow depth remain constant. Such a flow, in which the flow depth does not change
with distance, is called a uniform flow, and the corresponding flow depth is called
the normal depth, which is actually the critical point of Eq. (9) with a constant bed
slope S0:

yn =
(

Q2n2

B2S0k2

) 3
10

.

As a subcritical flow has downstream control, for any downstream boundary condition,
in such a flow, the water depth approximates to the normal depth in the upstream end far
away from the downstream (see Fig. 10). Therefore, if we just consider the population
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Fig. 10 The water depths in a river with a constant bed slope and with different downstream boundary
conditions. The solid line represents the normal depth yn = 0.5978m. Parameters: g = 9.8 m/s2, k = 1,
B = 50 m, n = 0.03 s/m1/3, S0 = 0.005, Q=50 m3/s, channel length = 700m

spreading to the upstream end, then we may assume that the water depth stays at the
normal depth, and the associated flow is a uniform flow.

Appendix 5: The Periodic Solution to (9)

Existence, Uniqueness and Stability

Note that a periodic solution to (9) with period L corresponds to a solution to (19),
and that a flow is subcritical if and only if Fr < 1, which implies that y > yc =
(Q2/(B2g))1/3, where yc is called the critical depth of the river. We solve the ODE (19)
in the half plane of y > yc. When the bed slope S0(x) is given as in (18), (19) has
a solution if and only if there exists some y0 > yc such that the solutions to the two
problems

⎧⎪⎨
⎪⎩

dy1

dx
= gk2 y10/3

1 S0r − n2(Q/B)2g

k2gy10/3
1 − (Q/B)2k2 y1/3

1
y1(0) = y0.

and

⎧⎪⎨
⎪⎩

dy2

dx
= −

(
gk2 y10/3

2 S0p − n2(Q/B)2g

k2gy10/3
2 − (Q/B)2k2 y1/3

2

)
,

y2(0) = y0.
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satisfy y1(L1) = y2(L2), which is true if and only if there exists some y0 > yc such
that the solutions to the two problems

⎧⎪⎨
⎪⎩

dy1

dx
= gk2 y10/3

1 S0r − n2(Q/B)2g

k2gy10/3
1 − (Q/B)2k2 y1/3

1
y1(0) = y0.

and

⎧⎪⎨
⎪⎩

dy3

dx
= −

(
gk2 y10/3

3 S0p − n2(Q/B)2g

k2gy10/3
3 − (Q/B)2k2 y1/3

3

)
· L2

L1
,

y3(0) = y0.

satisfy y1(L1) = y3(L1).
We actually look for a solution to (19) in the half plane of y > yn , where yn =(

Q2n2/(B2S0r k2)
)3/10

is the normal depth of the river where the bed slope is S0r ,
because otherwise it is easy to see from the above equivalent relations that we cannot
have a solution to (19). Let f1 and f2 be the right-hand sides of these two equations,
respectively. Then f1 is an increasing function of y, and f2 is a decreasing function
of y. As S0r > 0 and S0p < 0, we know that f1 < f2 for small y > yc and
f1 > f2 for big y > yc. This results in that the solution y1(x, y0) < y3(x, y0) at
small x and y1(x, y0) > y3(x, y0) at big x provided that y0 is not such that f1 > f2.
Therefore, by the continuity of y1 and y3 with respect to x , for any y0 > yc with
f1(y0) < f2(y0), there exists an xy0 such that y1(xy0 , y0) = y3(xy0 , y0). By the
continuity and monotonicity of f1 and f2, there exists a unique y0 > yn such that
xy0 = L1, which corresponds to a unique solution to (19).

For any solution to (9) with some downstream boundary condition, we can show that
the solution approaches the periodic solution at the very upstream periods by iterating
the solution backward from the downstream to the upstream. As an illustration, an
example is shown in Fig. 11, where the solid curve represents the periodic solution.
Therefore, the periodic solution to (9) is stable for solutions to (9) with all downstream
boundary conditions.

Numerical Calculation of the Periodic Solution

Recall that subcritical flow has a downstream control, which means that to change the
flow conditions in a section, flow conditions must be changed at a downstream location.
Consequently, when we solve Eq. (19), we start the computation at a downstream
control section and proceed in the upstream direction.

In more details, the idea for solving (19) is as follows. Guessing a boundary value
y(0)(L) at the downstream end x = L , one calculates backward and obtains all values
of y on [0, L], especially y(0)(0) at the upstream end x = 0. Then one iterates by taking
a new boundary value at the downstream y(1)(L) = y(0)(0) and obtains y(1)(0). Then
let y(2)(L) = y(1)(0) and repeat the process till y(n)(0) = y(n)(L) at the n-th step. The
reason for integrating backward is that the depth is asymptotic to a constant (called
normal depth) proceeding upstream. The fixed point iteration scheme will converge
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Fig. 11 The water depths in a periodic pool-riffle river with different downstream boundary conditions. The
solid line is the periodic solution with downstream boundary condition y(end) = 0.7652 m. Parameters:
g = 9.8 m/s2, k = 1, B = 50 m, n = 0.03 s/m1/3, L1 = 100 m, L2 = 200 m, S0p = −0.001,

S0r = 0.005, Q=50 m3/s, channel length= 1, 500 m

very quickly integrating upstream, while it will diverge if integrated downstream. In
each iteration, the equation is solved by the Runge–Kutta method.

Appendix 6: Spreading Speeds for the Models

Spreading Speeds for the Model in a Temporally Constant Flow

The Existence of Spreading Speeds for (3)

Let N (t, x) be the solution to (3) with initial value N0 ∈ C(R,R). Define the solution
map 	t of (3) as

	t [N0](x) = N (t, x), t ≥ 0.

It follows from the standard theory of solutions to (3) that (3) generates a monotone
semiflow {	t }t≥0 in the sense that 	0[N0] = N0 for all N ∈ C(R+,R),
	t [	s[N0]] = 	t+s[N0] for all t ≥ 0, s ≥ 0 and N0 ∈ C(R,R), and Q[t, N0] :=
	t [N0] is continuous in (t, N0) for all t ≥ 0 and N0 ∈ C(R,R). As (3) is a stan-
dard parabolic equation,	t satisfies all conditions in the abstract theory for spreading
speeds for a semiflow defined in a periodic habitat in (Liang and Zhao 2010). Then
by (Liang and Zhao 2010, Theorem 5.2), we obtain the existence of the upstream and
downstream spreading speeds (c− and c+) [see also e.g., (Berestycki et al. 2005; Liang
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and Zhao 2007; Weinberger 2002)]. Note that by similar arguments to those in (Lou
and Zhao 2010, Lemma 2.10), we have c+ + c− > 0. The results of spreading speeds
are included in the following theorem.

Theorem 1 Let N (t, x;ϕ) be the solution of (3) with N (0, x;ϕ) = ϕ(x) for all x ∈ R.
The system (3) admits upstream spreading speed c− and downstream spreading speed
c+ in the following sense.

(i) For any c > c+ and c′ > c−, if ϕ ∈ CK = {ψ ∈ C(R,R), 0 ≤ ψ(x) ≤
K forallx ∈ R} with ϕ(x) = 0 for x outside a bounded interval, then

lim
t→∞,x≥ct

N (t, x;ϕ) = 0, lim
t→∞,x≤−c′t

N (t, x;ϕ) = 0.

(ii) For any c < c+ and c′ < c−, there is a positive number r ∈ R, such that if ϕ ∈ CK

and ϕ(x) > 0 for x on an interval of length r , then

lim
t→∞,−c′t≤x≤ct

(N (t, x;ϕ)− K ) = 0.

Moreover, the spreading speeds in the upstream and downstream directions are
also the minimal wave speeds for spatially periodic traveling waves, respectively. The
following result follows from Theorem 5.3 in (Liang and Zhao 2010).

Theorem 2 {	t }t≥0 has an L-periodic rightward traveling wave V (x − ct, x) con-
necting K to 0 with V (ξ, x) being continuous and non-increasing in ξ ∈ R if and
only if c ≥ c+. {	t }t≥0 has an L-periodic rightward traveling wave V (x + ct, x)
connecting 0 to K with V (ξ, x) being continuous and increasing in ξ ∈ R if and only
if c ≥ c−.

The Estimation of Spreading Speeds for (20)

We can follow the steps in Example 6.2 in (Weinberger 2002) to derive the spreading
speeds for (20). The linearized equation for (20) at N = 0 is

∂N (t, x)

∂t
= 1

y(x)

∂

∂x

[
D(x)y(x)

∂N (t, x)

∂x

]
− Q

By(x)

∂N (t, x)

∂x
+ r N (t, x). (34)

Let N (t, x) = eλt−ζρxψ(x) with ζ > 0 and ρ = ±1, and substitute it into (34). We
obtain

λeλt−ζρxψ(x) = 1

y(x)

∂

∂x

[
D(x)y(x)

∂[eλt−ζρxψ(x)]
∂x

]

− Q

By(x)

∂[eλt−ζρxψ(x)]
∂x

+ reλt−ζρxψ(x),
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which can be simplified as

λψ(x) = D(x)ψ ′′(x)+
[

1

y(x)

∂(D(x)y(x))

∂x
− 2ζρD(x)− Q

By(x)

]
ψ ′(x)

+
[

D(x)ζ 2 − ζρ

y(x)

∂(D(x)y(x))

∂x
+ Qζρ

By(x)
+ r

]
ψ(x). (35)

Define Lρ as

Lρ := D(x)
∂2

∂x2

[
1

y(x)

∂(D(x)y(x))

∂x
− 2ζρD(x)− Q

By(x)

]

+ ∂

∂x

[
D(x)ζ 2 − ζρ

y(x)

∂(D(x)y(x))

∂x
+ Qζρ

By(x)
+ r

]
.

It follows that Lρ is compact and strongly positive, and hence, it admits a single
principal eigenvalue with a positive periodic eigenfunction. Let λ(ζρ) be the principle
eigenvalue and ψ be the associated positive periodic eigenfunction. Then λ(ζρ) and
ψ satisfy (35) with ψ(0) = ψ(L) and ψ ′(0) = ψ ′(L). Define

cρ = inf
ζ>0

λ(ζρ)

ζ
.

When ρ = 1, cρ is the downstream spreading speed and when ρ = −1, cρ is the
upstream spreading speed. We can apply the techniques for the principal eigenvalue
of Hill’s equations to (35) to obtain λψ(x).

This approximation provides a way to estimate spreading speeds for (20). However,
we cannot have explicit expressions and will have to follow numerical calculations.
This results in difficulties in finding how different factors affect spreading speeds.

Spreading Speeds for the Model in a Time-Varying Flow Environment (22)

To find the spreading speeds for the model (22) with varying water discharge, let
N (t, x) = V (t, x) · e−ηρx and substitute it into the linearized equation of (22) at
N = 0:

∂N (t, x)

∂t
= −∂y(t, x)

∂t
· N (t, x)

y(t, x)

+ 1

y(t, x)

∂

∂x

[
D(t, x)y(t, x)

∂N (t, x)

∂x

]

− Q(t)

By(t, x)

∂N (t, x)

∂x
+ f (0)N (t, x), (36)
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where ρ represents the direction with ρ = 1 in the downstream direction and ρ = −1
in the upstream direction. We then have

∂V (t, x)

∂t
= −∂y(t, x)

∂t
· V (t, x)

y(t, x)
+ D(t, x)

∂2V (t, x)

∂x2

+
[
−2ηρD(t, x)+ ∂D(t, x)

∂x
+ D(t, x)

y(t, x)

∂y(t, x)

∂x
− Q(t)

By(t, x)

]
∂V (t, x)

∂x

+
[
η2 D(t, x)− ηρ

(
∂D(t, x)

∂x
+ D(t, x)

y(t, x)

∂y(t, x)

∂x
− Q(t)

By(t, x)

)
+ f (0)

]

×V (t, x), (37)

Let LT
ηρ be the Poincaré map of (37), where T is the period of the varying flow. Then

the theory in (Weinberger 2002) implies that the spreading speed of LT
ηρ is

cT
ρ = inf

η>0

ln λ(ηρ)

η
,

where λ(ηρ) is the principal eigenvalue of LT
ηρ corresponding to a positive periodic

eigenfunction, and the sign of ρ determines the direction (upstream or downstream).
It then follows from the theory in (Liang et al. 2006) that the spreading speed of (22)
is

cρ = 1

T
inf
η>0

ln λ(ηρ)

η
.

c1 is the downstream spreading speed, and c−1 is the upstream spreading speed.
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